Loading…
Monday, October 20, 2014
Current Weather
Loading Current Weather....
Published: Sunday, 12/29/2013 - Updated: 9 months ago

TECHNOLOGY

Computers can learn from errors

New systems replicate neurons in humans

NEW YORK TIMES
Computers have entered the age when they are able to learn from their own mistakes, a development that is about to turn the digital world on its head.  The first commercial version of the new kind of computer chip is scheduled to be released in 2014. Not only can it automate tasks that now require painstaking programming — for example, moving a robot’s arm smoothly and efficiently — but it can also sidestep and even tolerate errors, potentially making the term “computer crash” obsolete. Computers have entered the age when they are able to learn from their own mistakes, a development that is about to turn the digital world on its head. The first commercial version of the new kind of computer chip is scheduled to be released in 2014. Not only can it automate tasks that now require painstaking programming — for example, moving a robot’s arm smoothly and efficiently — but it can also sidestep and even tolerate errors, potentially making the term “computer crash” obsolete.
ASSOCIATED PRESS Enlarge

PALO ALTO, Calif. — Computers have entered the age when they are able to learn from their own mistakes, a development that is about to turn the digital world on its head.

The first commercial version of the new kind of computer chip is scheduled to be released in 2014. Not only can it automate tasks that now require painstaking programming — for example, moving a robot’s arm smoothly and efficiently — but it can also sidestep and even tolerate errors, potentially making the term “computer crash” obsolete.

The new computing approach, already in use by some large technology companies, is based on the biological nervous system, specifically on how neurons react to stimuli and connect with other neurons to interpret information. It allows computers to absorb new information while carrying out a task, and adjust what they do based on the changing signals.

In coming years, the approach will make possible a new generation of artificial intelligence systems that will perform some functions that humans do with ease: see, speak, listen, navigate, manipulate, and control. That can hold enormous consequences for tasks like facial, and speech recognition, navigation, and planning, which are still in elementary stages and rely heavily on human programming.

Designers say the computing style can clear the way for robots that can safely walk and drive in the physical world, although a thinking or conscious computer, a staple of science fiction, is still far off on the digital horizon.

“We’re moving from engineering computing systems to something that has many of the characteristics of biological computing,” said Larry Smarr, an astrophysicist who directs the California Institute for Telecommunications and Information Technology, one of many research centers devoted to developing these new kinds of computer circuits.

Conventional computers are limited by what they have been programmed to do. Computer vision systems, for example, only “recognize” objects that can be identified by the statistics-oriented algorithms programmed into them. An algorithm is like a recipe, a set of step-by-step instructions to perform a calculation.

But last year, Google researchers were able to get a machine-learning algorithm, known as a neural network, to perform an identification task without supervision. The network scanned a database of 10 million images and trained itself to recognize cats.

In June, the company said it had used those neural network techniques to develop a new search service to help customers find specific photos more accurately.

The new approach, used in hardware and software, is being driven by the explosion of scientific knowledge about the brain. Kwabena Boahen, a computer scientist who leads Stanford’s Brains in Silicon research program, said that was also its limitation, as scientists are far from fully understanding how brains function.

Until now, the design of computers was dictated by ideas originated by physicist John von Neumann about 65 years ago. Microprocessors perform operations at lightning speed, following instructions programmed using long strings of 1s and 0s. They generally store that information separately in what is known, colloquially, as memory, either in the processor itself, in adjacent storage chips, or in higher capacity magnetic disk drives.

The data — for instance, temperatures for a climate model or letters for word processing — are shuttled in and out of the processor’s short-term memory while the computer carries out the programmed action. The result is then moved to its main memory.

The new processors consist of electronic components that can be connected by wires that mimic biological synapses. Because they are based on large groups of neuronlike elements, they are known as neuromorphic processors, a term credited to the California Institute of Technology physicist Carver Mead, who pioneered the concept in the late 1980s.

IBM and Qualcomm, as well as the Stanford research team, have already designed neuromorphic processors, and Qualcomm has said that it is coming out in 2014 with a commercial version, which is expected to be used largely for further development. Moreover, many universities are now focused on this new style of computing. This fall, the National Science Foundation financed the Center for Brains, Minds and Machines, a new research center based at the Massachusetts Institute of Technology, with Harvard and Cornell.



Guidelines: Please keep your comments smart and civil. Don't attack other readers personally, and keep your language decent. If a comment violates these standards or our privacy statement or visitor's agreement, click the "X" in the upper right corner of the comment box to report abuse. To post comments, you must be a Facebook member. To find out more, please visit the FAQ.

Related stories